Candida auris: Epidemiology, surveillance, and prevention

Patricia M. Barrett, MSD

Philadelphia HAI/AR Collaborative Meeting February 28, 2018

Disclosures

I have nothing to disclose.

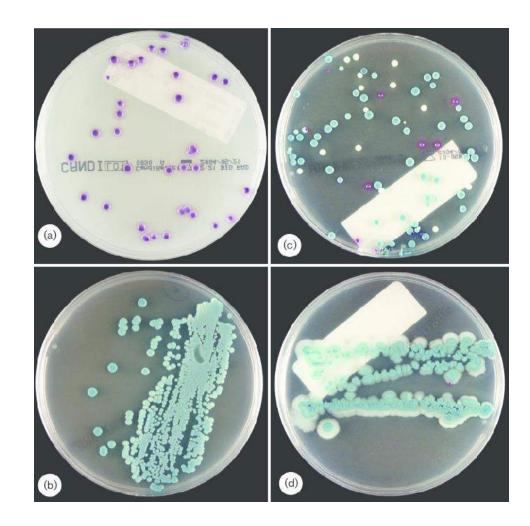
Acknowledgement

- Many of today's slides come from presentations previously given in New Jersey.
- Some content was adapted from presentations given by Dr. Sharon Tsay and CDC Mycotic Diseases Branch.

Learning Objectives

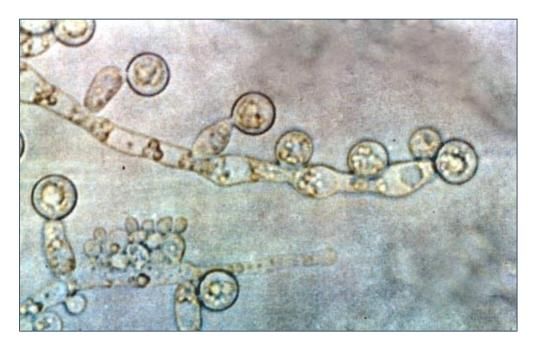
- 1. Review the emergence, identification, resistance, and transmission of *Candida auris*
- 2. Identify key prevention and control activities for *Candida auris*

Agenda


- Rethinking 'Candida'
 - Emergence
 - Identification
 - Resistance
 - Transmission
- Prevention
- Response
- New Jersey experiences

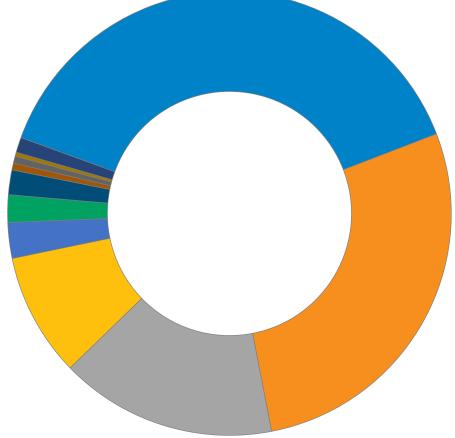
Takeaways

Let's talk *Candida*.


Candida

- Catch-all for asexual yeast
- Includes hundreds of unrelated species
- More added each year

Candidemia

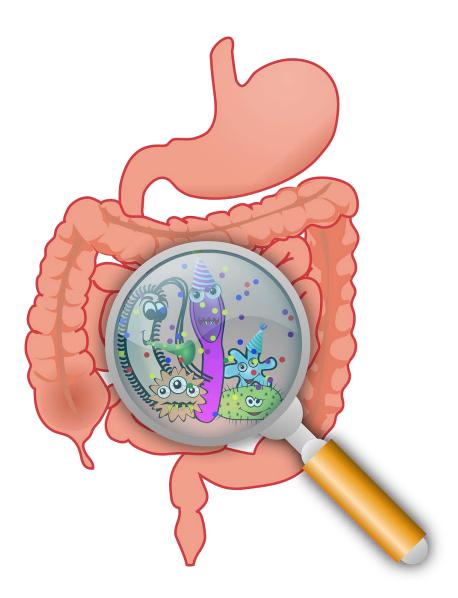

- Bloodstream infections (BSIs) caused by *Candida* spp.
- Candida is the most common organism causing healthcareassociated BSIs
- Incidence ~10-14 per 100,000
- Mortality 30-50%

Candida albicans

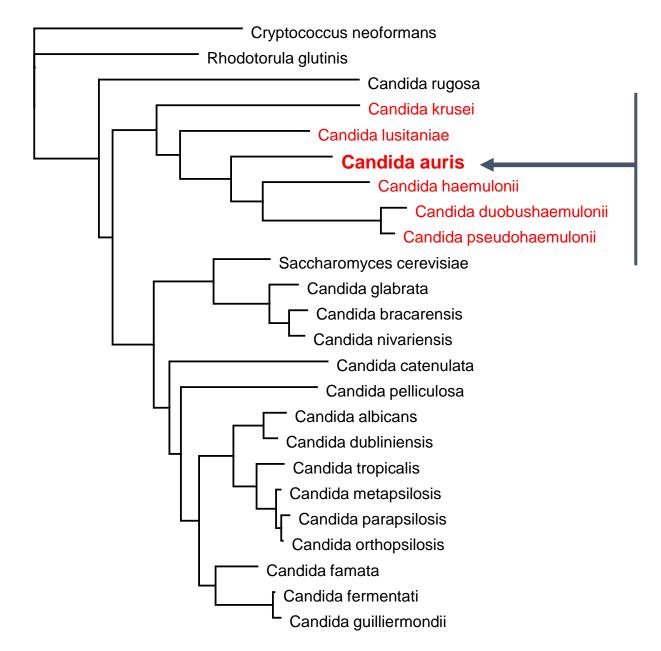
Candida species distribution in bloodstream isolates

Emerging Infections Program Surveillance, US 2008-2016 (n = ~7,000 isolates)

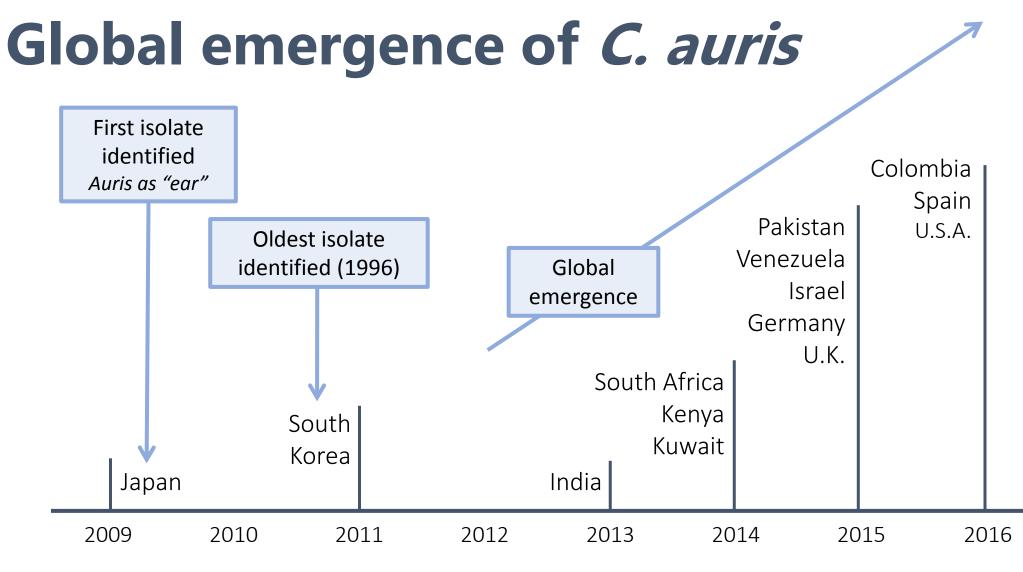
Candida albicans (38.6%) Candida glabrata (27.8%) Candida parapsilosis (15.8%) Candida tropicalis (9.0%) Candida dubliniensis (2.6%) Candida krusei (2.0%) Candida lusitaniae (1.8%) Candida guilliermondii (0.5%) Candida orthopsilosis (0.5%) Candida metapsilosis (0.3%) ■ Other species (1.1%)


Who gets candidemia?

- Broad-spectrum antibiotic use
- Immunocompromised
- Central lines
- Prolonged ICU stay
- Surgical patients (abdominal surgery)

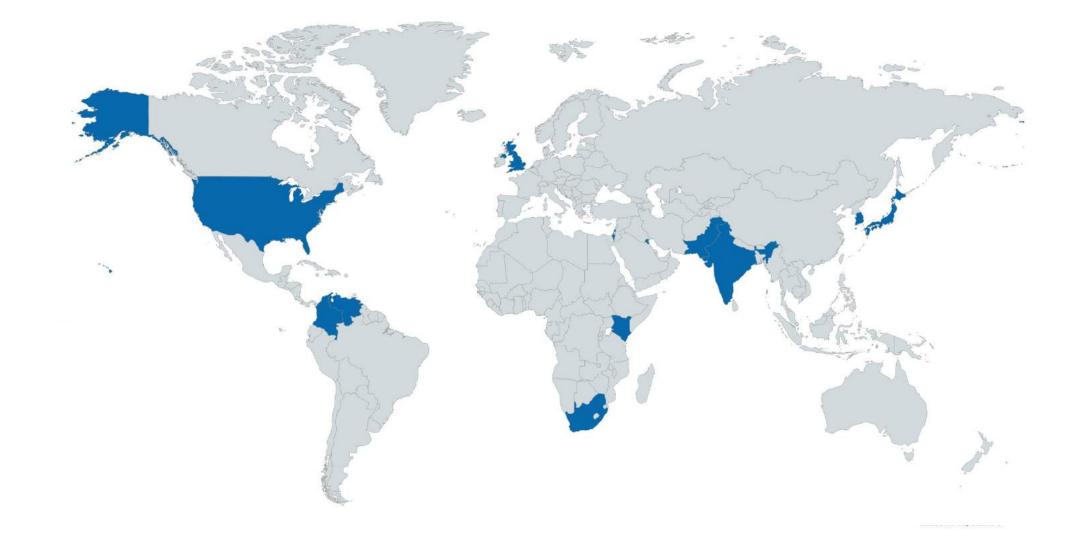


Source of infection


- Conventional wisdom: autoinfection with host flora
- Transmission in hospital environments not thought to be common
- Outbreaks rare, but reported with Candida parapsilosis

Conventional wisdom does not apply to *Candida auris*.

Closely related to other *Candida* species known for antifungal resistance


Year of first identification

Healthy skepticism

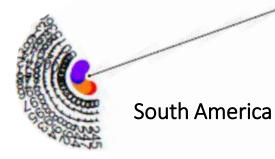
- Was *C. auris* with us all along?
- Maybe newer diagnostic methods responsible for supposed emergence?
 - MALDI-TOF
 - DNA sequencing
- Most systems misidentify as Candida haemulonii or other species

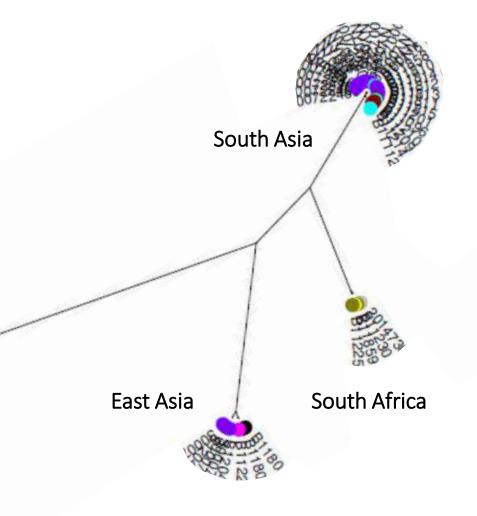
International collaboration to assess emergence

Emergence is not just improved detection

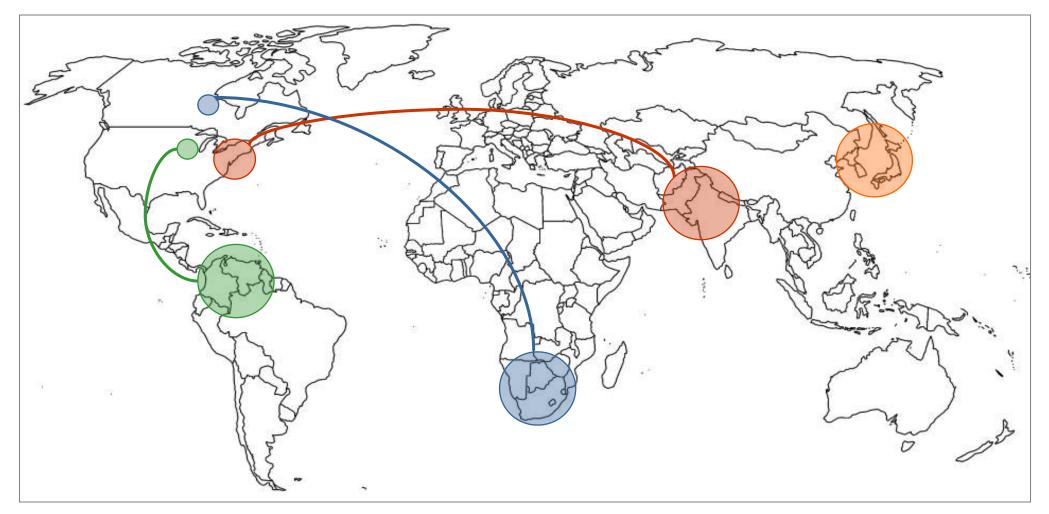
EIP Candidemia Surveillance Program

- >7000 Candida isolates collected in U.S. 2008 –2016
- No *C. auris* found

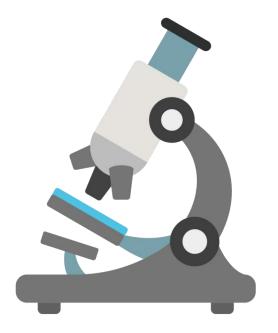

SENTRY and ARTEMIS programs (private collections from 4 continents)


- >30,000 Candida isolates from 1996-2015
- No C. auris before 2009

Data provided courtesy of CDC Mycotic Diseases Branch


International emergence

- Whole genome sequencing of isolates show four clades
 - Very different across regions (>40K-400K SNPs)
 - Nearly identical within regions (<70 SNPs)</p>
- Simultaneous development?



Introduction to North America

Data and concept provided courtesy of CDC Mycotic Diseases Branch

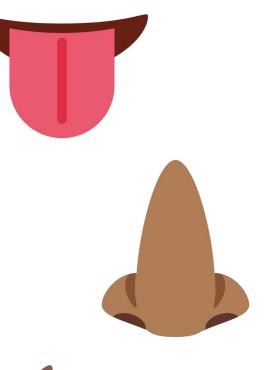
Identifying C. auris

Challenges with identification

- Identification varies by laboratory method.
- C. auris can be misidentified as:
 - Candida haemulonii
 - Candida duobushaemulonii
 - Candida catenulate
 - Candida famata
 - Candida guilliermondii
 - Candida lusitaniae

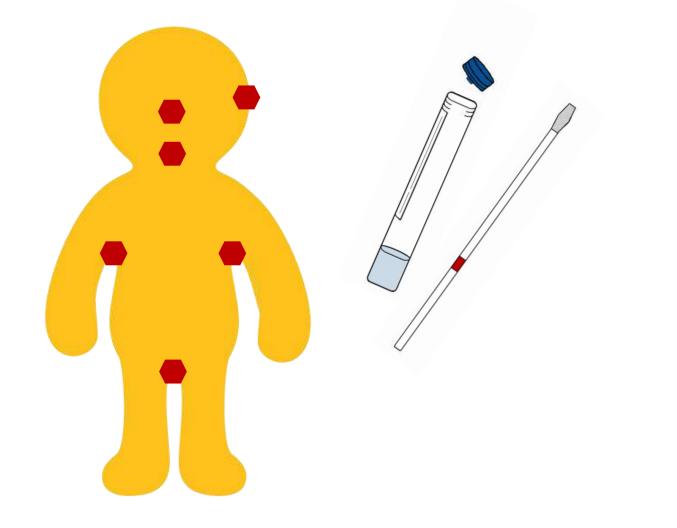
- Candida parapsilosis
- Candida sake
- Rhodotorula glutinis
- *Candida* spp. after a validated method of *Candida* identification attempted

Misidentifications of *C. auris* (1)

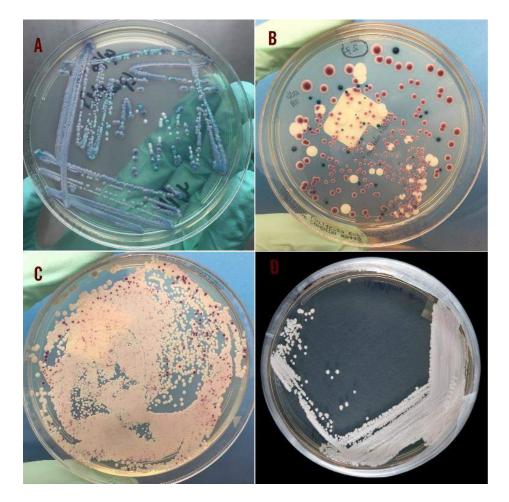

Identification Method	% NJ Labs	Organism <i>C. auris</i> can be misidentified as	
Vitek 2 YST Proper ID possible with v.8.01	57%	Candida haemulonii Candida duobushaemulonii	
API 20C	32%	<i>Rhodotorula glutinis</i> (characteristic red color not present) <i>Candida sake</i>	
BD Phoenix yeast identification system	4%	Candida haemulonii Candida catenulata	
Microscan	8%	Candida famata Candida guilliermondii (no hyphae/pseudohyphae present on cornmeal agar) Candida lusitaniae (no hyphae/pseudohyphae present on cornmeal agar) Candida parapsilosis (no hyphae/pseudohyphae present on cornmeal agar)	

Misidentifications of *C. auris* (2)

Identification Method	% NJ Labs	Databases needed to identify <i>C. auris</i>	
MALDI-TOF	25%		
Bruker Biotyper		Research use only database	
VITEK MS		Saramis Ver 4.14 database and Saccharomycetaceae update	
Molecular methods		Sequencing the D1-D2 region of the 28s rDNA or the Internal Transcribed Region (ITS) of rDNA	


Candida auris speciation

- Candida auris identification requires speciation of Candida isolates
- ~30% of clinical cases in the U.S. have been from non-bloodstream isolates (urine, bile, wounds, etc.)
 - Isolates from non-sterile sites may not be worked up to species level
- 68% of surveyed clinical labs in New Jersey speciated isolates onsite

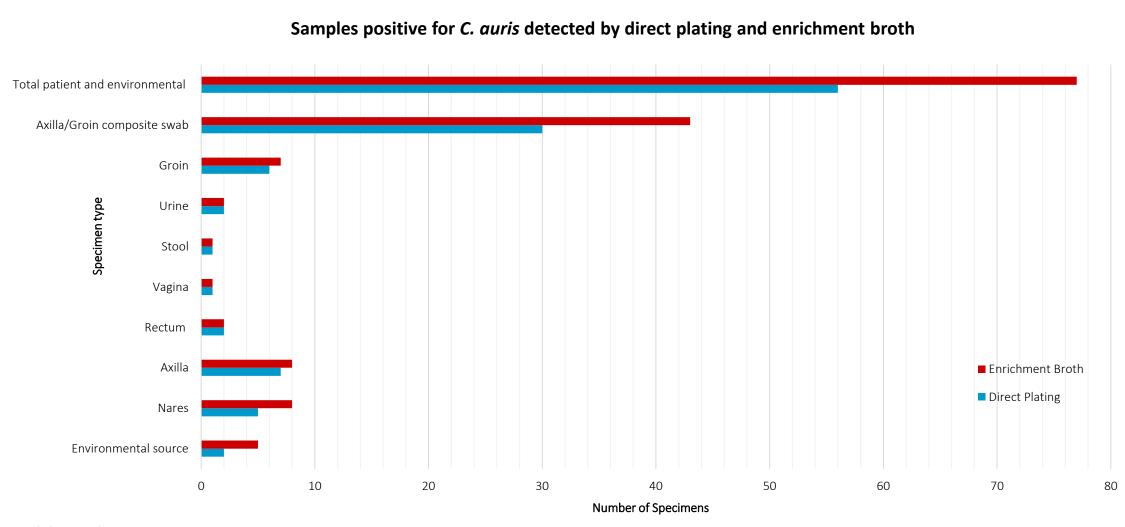

Challenges to detecting colonization

Establishing methods to culture and isolate *C. auris*

- Enrichment broth procedure
- Combination of high salt media (10% w/v) and high temperature (40°C) incubation
- Simple procedure readily adopted by advanced and resource limited laboratories

Enrichment broth

CHROMagar


Cloudy (left) = positive

Candida auris appears pink

Welsh et al., 2017

Establishing methods to culture and isolate C. auris

Welsh et al., 2017

Culture independent diagnostic

- Culture dependent diagnostics take ~14 days
- CDC assisting the development of rapid diagnostics
 - Cepheid
 - **T**2
- PCR developments underway:
 - Rutgers contract with CDC to develop a rapid PCR assay
 - NYSDOH Wadsworth Laboratories

Antifungal resistance of *C. auris*

Antifungal susceptibility testing

 Susceptibility breakpoints for *C. auris* have not been established, but CDC developed the following as a general guide:

Class/Drug	Tentative MIC Breakpoints (μg/mL)	Class/Drug	Tentative MIC Breakpoints (μg/mL)
Fluconazole	≥32	Caspofungin	≥ 2
Amphotericin B	≥2	Micafungin	≥ 4
Anidulafungin	≥ 4		

*Reference updated CDC guidance for more information and comments on interpretation.

Drug resistance of *C. auris*

Polyenes

Azoles

Echinocandins

35% resistant to amphotericin B

93% resistant to fluconazole54% resistant to voriconazole

7% resistant to echinocandins

41% multi-drug resistant 4% resistant to all three major antifungal classes

Percentages based on susceptibility testing interpretations of 68 isolates tested by CDC, courtesy of CDC Mycotic Diseases Branch

Drug resistance of *C. glabrata*

amphotericin B

11% resistant to fluconazole

Echinocandins

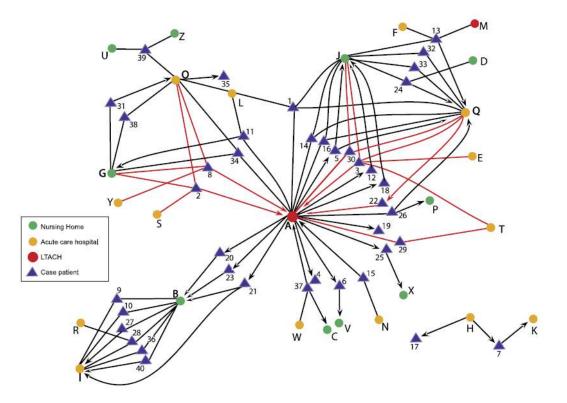
Up to 12% resistant to echinocandins

Data from EIP surveillance testing provided courtesy of CDC Mycotic Diseases Branch

Resistance mechanisms

• A significant portion of the *C. auris* genome encodes

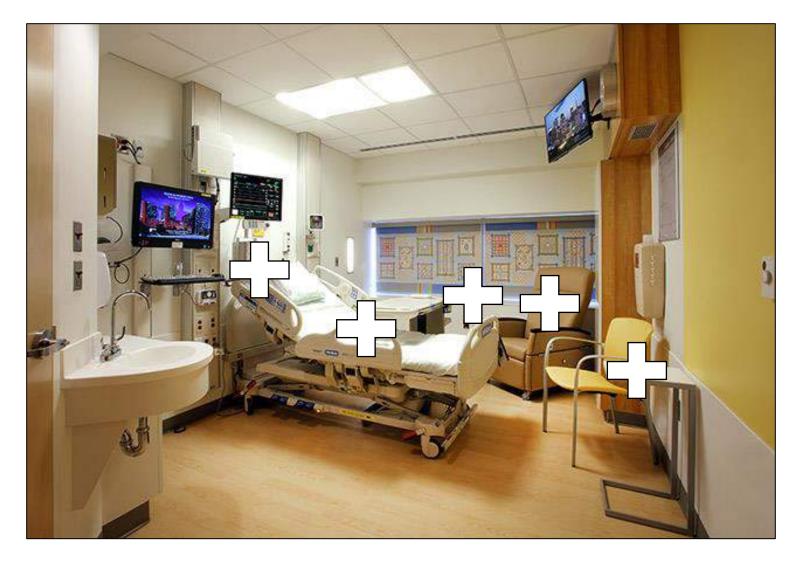
- ATP-binding cassette (ABC)
- Major facilitator superfamily (MFS) transporter families
- Drug transporters
- ABC-type efflux activity by Rhodamine 6G transport was significantly greater among *C. auris* than *C. glabrata* isolates
- ERG-11 hotspot mutations
 - Different mutations in different clades


C. auris transmission: what we know

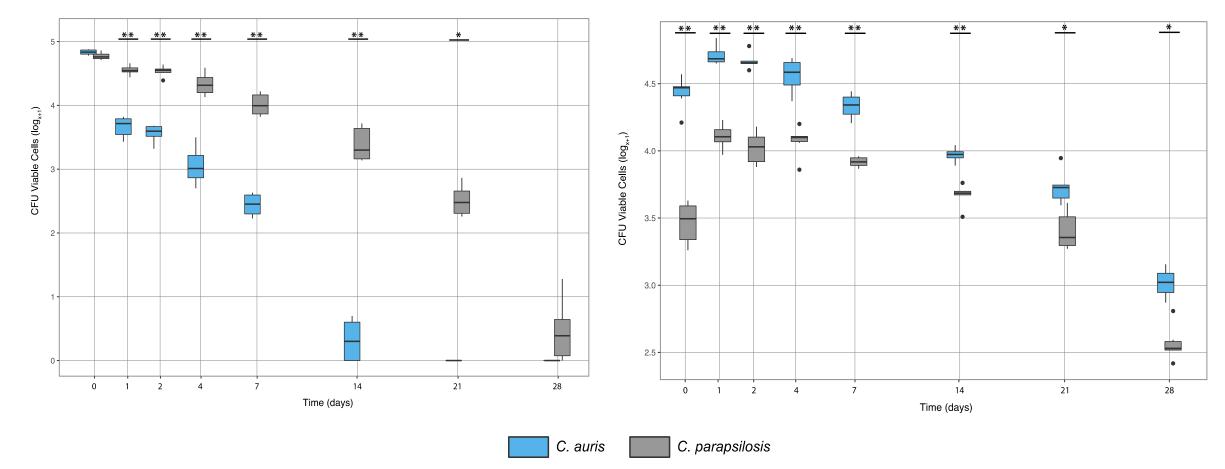
Environmental surfaces, equipment

- Piedrahita et al. (2017), Infection Control & Hospital Epidemiology
- New York State and CDC investigation
- Patients and healthcare workers
 - Selenchez et al. (2016), Antimicrobial Resistance and Infection Control
- Donor-derived
 - Azar et al. (2017), Clinical Infectious Diseases

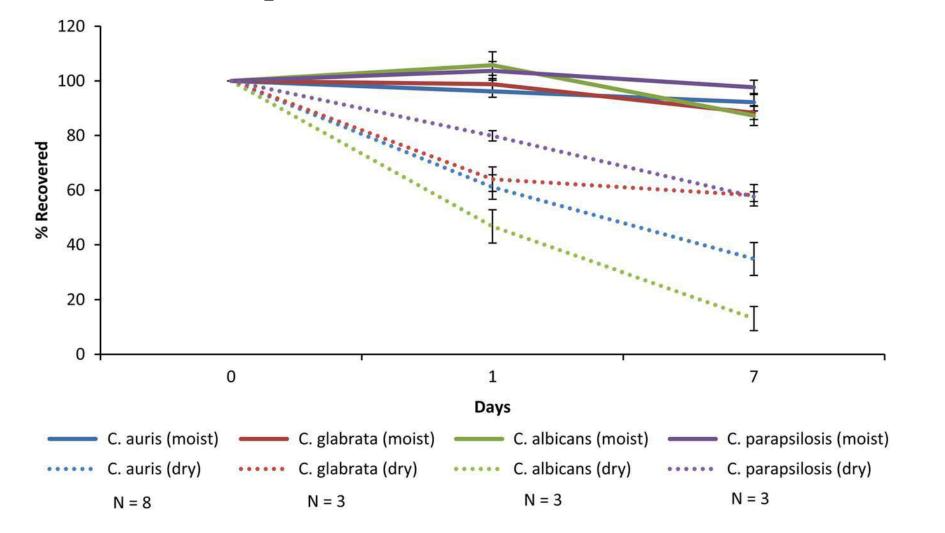
C. auris transmission


- More research is needed to better understand *C. auris* transmission
- Currently, the majority of public health response and recommendations assume transmission is similar to CRE
- Various studies are ongoing

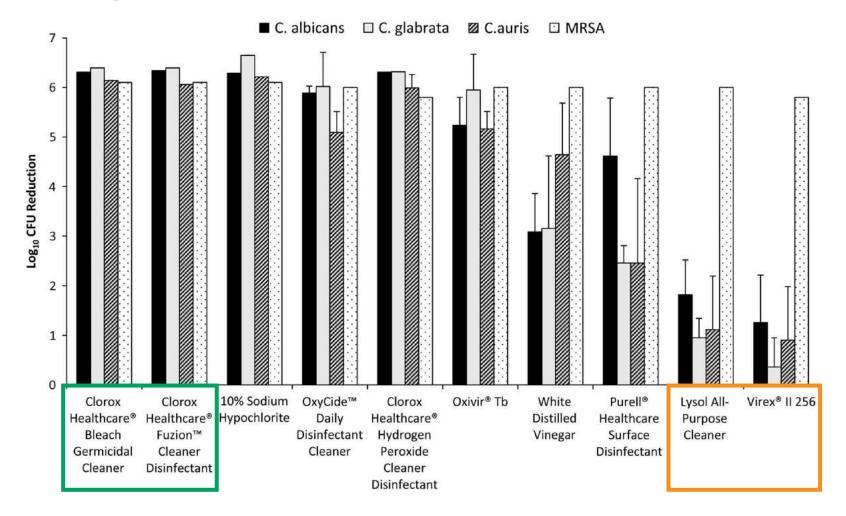
C. auris in the environment


Environmental contamination

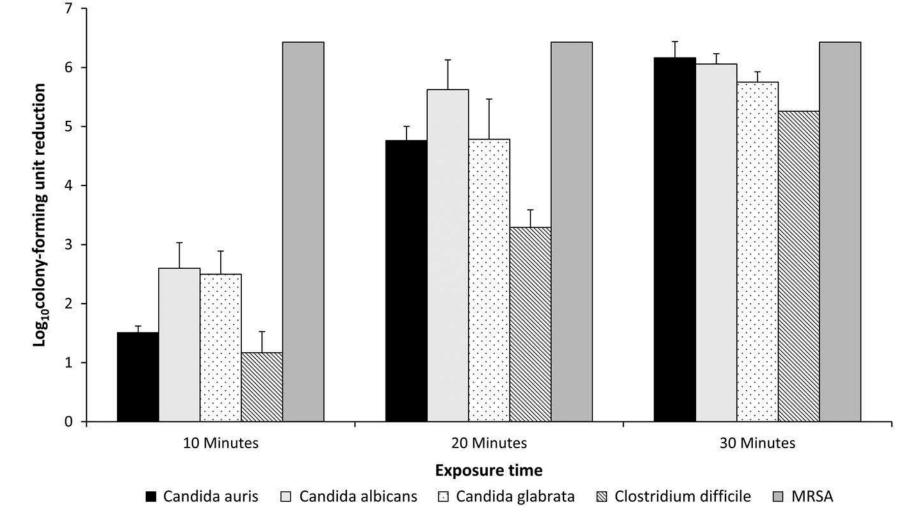
Survival and persistence


Remains viable by culture for at least two weeks

Remains viable by esterase activity for at least four weeks


Welsh et al., 2017

Survival and persistence


Piedrahita et al., 2017

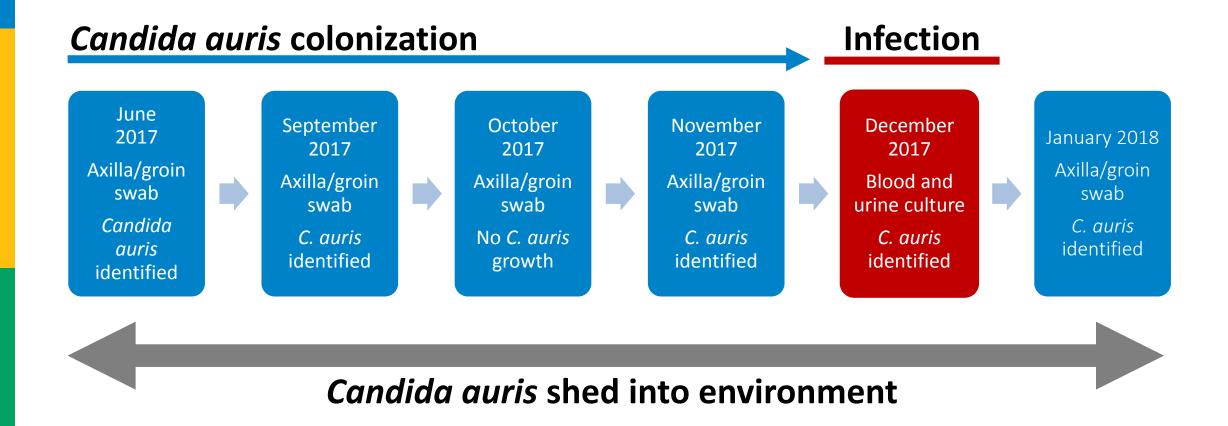
Cleaning and disinfection

Cadnum et al., 2017

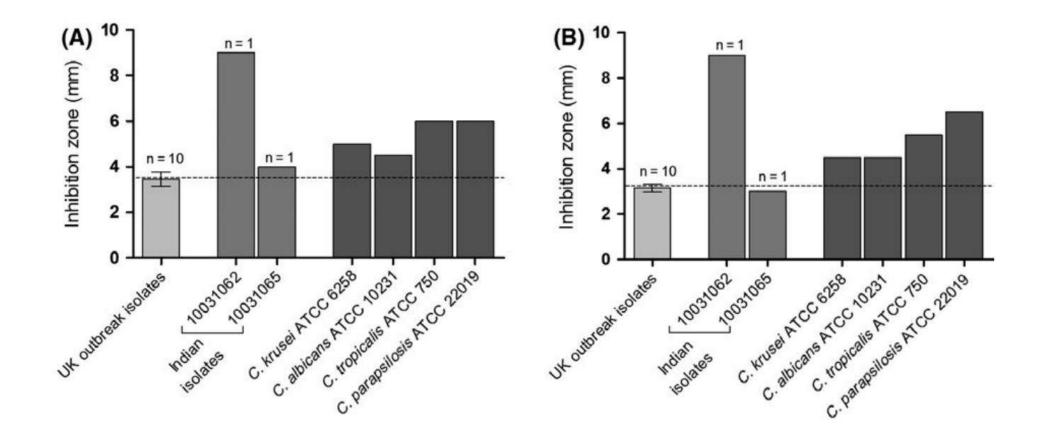
Ultraviolet light

Cadnum et al., 2018

Patient + healthcare worker transmission


Findings from a European hospital

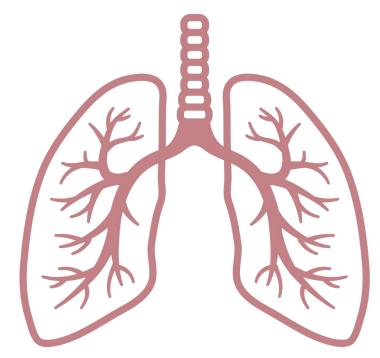
- Minimal contact with a case is needed for C. auris acquisition
 - Root cause analysis found acquisition required > 4 hour contact period with a known case or contaminated environment
- Transient carriage of C. auris by a healthcare worker
 - I of 285 HCWs had a positive nares swab
 - The positive staff had extensive care with a colonized patient


C. auris colonization

- Little is known about *C. auris* colonization.
- Axilla and groin appear to be the highest-yield sites to identify *C. auris* colonization, per CDC
- CDC continues to offer re-screening of *C. auris* colonization, however few patients have met basic requirements to be considered 'decolonized'

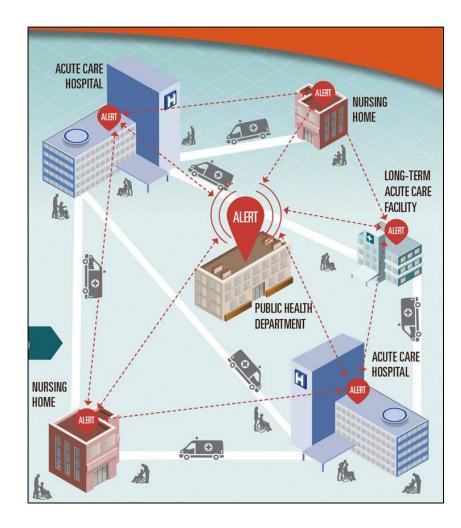
C. auris colonization example

Decolonization regimens?


Unknowns of *C. auris* colonization

- Length of colonization
 - Possibly indefinite
- Colonization dynamics
 - Skin recolonization from gut or oral cavity?
- True risk of C. auris infection after colonization
- No public health recommendations for *C. auris* decolonization

Donor-derived transmission


- Illinois organ donor had premortem respiratory culture that grew *C. haemulonii* (misidentification)
- Lung from this donor went to a Massachusetts patient
 - Pre and post-transplant cultures grew C. auris
- These isolates were closely related to IL isolates by whole genome sequencing (WGS)

Transmission in New Jersey

No 'smoking gun'

- Multiple overlaps in units, staff, equipment, specialty care, etc.
- Patient movement within a healthcare transfer network
 - High-acuity units, facilities
- Little information derived from WGS
 - Per CDC, NJ isolates are ~99.9% related

Preventing C. auris

Antimicrobial stewardship

- Many C. auris patients received broad-spectrum antimicrobials in the weeks before first culture yielding C. auris.
- >50% of patients in a NJ long-term acute care hospital (LTACH) with an ongoing C. auris outbreak received antifungals
- Antimicrobial therapies may create an opportunity for C. auris acquisition or infection

Who receives antifungals?

- Sickest of patients tend to receive antifungals
 - Immunocompromised
 - Indwelling devices
 - ICU patients receive more antifungals than general inpatient
- At-risk population is growing
 - Increasing number of transplants and immune-modulating therapies
 - More post-acute care facilities with ICU-like units (LTACHs, vSNF, etc.)

Challenges with fungal infections

- No single syndrome for fungal infections
- Delayed treatment may lead to increased mortality
 - Empiric treatment for invasive infections
- Candida colonization vs. infection
 - Is treatment needed from identification in non-sterile specimens?
- Infectious Disease consultation often needed

Challenges in antifungal stewardship

- Fungal ID by culture may be limited
 - Longer turnaround time for certain tests
 - Ancillary diagnostics do not allow for resistance testing
- Clinical data may be limited or unclear
- Staff are less familiar with concepts, compared to antibiotic stewardship

Existing guidelines

Clinical Infectious Diseases

IDSA GUIDELINE

Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America

Activities do not significantly differ from antibiotic stewardship.

Think *antimicrobial* stewardship program!

Pre AF Stewardship audit and identification of main AF prescribers

Creation of a Collaborative Group on Mycosis and Antifungal treatment

Care of medical devices

- A majority of patients with *C. auris* infection or colonization have various types of invasive lines and tubes.
 - E.g., central venous catheters, urinary catheters and tracheostomy tubes.
- Strict adherence to insertion and maintenance practices of patient devices
- Ensure continued assessment of need for devices and prompt removal when no longer needed
- When C. auris patients are identified, review and assess these practices

Surgical procedures

- For patients with C. auris, skin preparation should include alcoholbased agent unless contraindicated
- Schedule procedures for C. auris patients for the end of the day.

Responding to *C. auris*

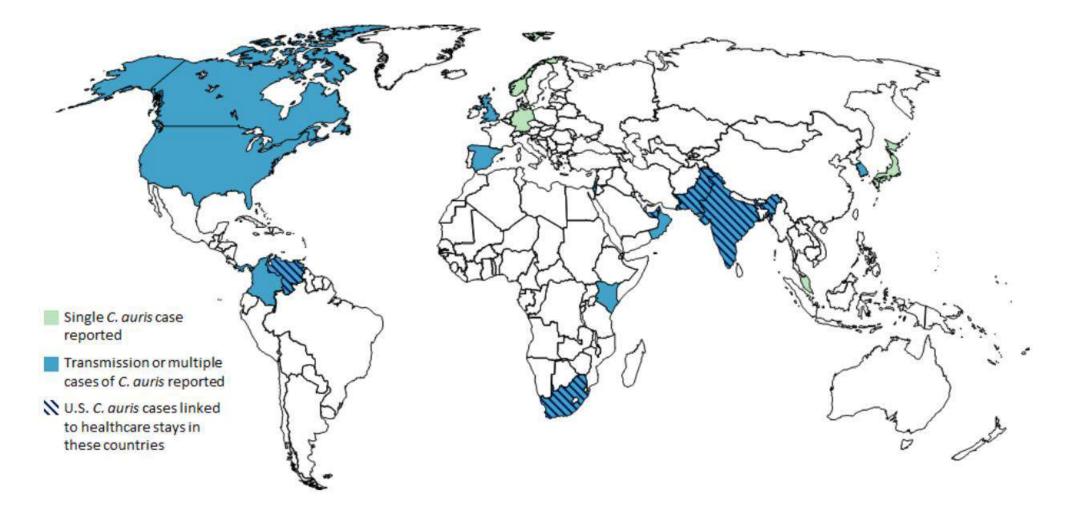
"We have a patient with Candida haemulonii..... Now what?"

Ideal C. auris response

- Suspect and identify early
- Isolate quickly
- Report results
- Remove from the environment
- Communicate moving forward

Identify C. auris early

- Speciate all *Candida* isolates from normally sterile sites
- Suspect C. auris when there is an increase infections of unidentified Candida spp. in a patient care unit



Identify C. auris early

- Speciate Candida isolates from non-sterile sites when:
 - Clinically indicated (e.g., patient is not responding to therapy)
 - When C. auris patients have been identified in the facility or unit
 - During outbreaks
 - When patient had overnight stay at healthcare facility in a country with *C. auris* transmission within 1 year

Countries with *C. auris* transmission

Isolate quickly

- Whenever C. auris is suspected, consider preemptive control measures until laboratory confirmation
- Standard and Contact Precautions
- Cohort *C. auris* patients to one area in a facility or unit
 - Minimize number of staff members caring for C. auris patients
- Placement in single rooms
 - C. auris patients can share rooms
 - If limited rooms, prioritize patients with highest level of care

PDPH C. auris isolation requirements

Hospitals:

- Contact precautions
- Private room
- Long-term care:
 - Contact precautions or enhanced standard precautions
 - Private room if available
- Applies to current <u>and</u> future stays
- Dedicate reusable equipment to the patient, when possible

Reporting *C. auris* to PDPH

- Candida auris and Candida haemulonii from any body site is reportable to PDPH upon receipt of results
 - Applies to both providers and laboratorians
- See the Board of Health regulations: *'Regulations Governing the Control of Communicable and Non-communicable Diseases and Conditions'*

Environmental cleaning and disinfection

- Use Environmental Protection Agency (EPA)-registered hospital-grade disinfectant effective against *Clostridium difficile* spores
 - Ensure contact time, dilution, etc.
- Daily and terminal cleaning of:
 - *C. auris* patient room and any care areas (radiology, physical therapy, etc.)
 - Shared equipment of the unit
 - Common areas (handrails, nurse's stations, etc.)
- Also required by PDPH

Communicate C. auris transfer

- Prior to transfer, sending facility should notify the receiving facility of *C. auris* infection or colonization
 - Required by PDPH
- Call ahead to receiving facility whenever possible
- Include *C. auris* in intake or discharge documents
- NJ uses a C. auris coversheet and UT form

- All cleaning should be completed with an Environmental Protection Agency (EPA)
 registered disinfectant effective against *Clostridium difficile*
 - All equipment should be cleaned after contact with this patient (e.g. stethoscopes, X-ray machines, respiratory therapy machines)
 - This patient's room should be cleaned daily and terminally upon discharge • Transport vehicles should be terminally cleaned after transfer of this
 - patient using an EPA registered disinfectant effective against Clostridium difficile
- Notification of these recommendations to receiving units or healthcare facilities
 prior to patient transfer or discharge with a phone call

*If a patient cannot be placed in a private room, please ensure their roommates or neighbors are at low risk of developing *Condido* infections. (e.g. are not on antifungal therapies, have no or few indiveiling devices)

Note: Patients may be removed from contact precautions following a series of negative surveillance cultures, as recommended by the CDC

Please call the New Jersey Department of Health at 609-826-5964 to report the patient's admission to your facility and speak with a subject matter expert.

To read the surrent recommendations for Condido ouris, visit the CDC website at: https://www.cdc.gov/fungal/diseases/candidiasis/recommendations.html.

April 10, 2017

New Jersey Department of Health Communicable Disease Service

Additional recommendations

- Hemodialysis and infusion clinics
- Outpatient settings (physician offices, wound clinic, etc.)
- Home healthcare
- Home and family members
- https://www.cdc.gov/fungal/diseases/candidiasis/c-auris-infectioncontrol.html

Summary

C. auris...

- Is challenging to identify
- Is multidrug resistant
- Can be transmitted in healthcare settings
- Difficult to contain
- Early identification and meticulous infection control is needed to control its spread.
- Philadelphia facilities and providers need to be alert and informed in order to identify and prevent *C. auris* transmission.

Acknowledgements

- Rebecca Greeley
- Kathleen Ross
- Tara Fulton
- Jessica Felix
- Jason Mehr
- Julia Wells
- Lisa McHugh
- Ed Lifshitz
- Tina Tan

- NJDOH Regional Epidemiology Program
- NJDOH Public Health and Environmental Laboratories
- CDC Mycotic Disease Branch
 - Sharon Tsay
 - Snigdha Vallabhaneni
 - Brendan Jackson
 - Katie Forsberg
- CDC Division of Healthcare Quality and Promotion

Questions?

Patricia M. Barrett, MSD 609-826-5964 patricia.barrett@doh.nj.gov

Antimicrobial Resistance Coordinator Communicable Disease Service New Jersey Department of Health

References

- Abdolrasouli, A., Armstrong-James, D., Ryan, L., & Schelenz, S. (2017, 11 1). In vitro efficacy of disinfectants utilised for skin decolonisation and environmental decontamination during a hospital outbreak with *Candida auris*. *Mycoses*, 60(11), 758-763.
- Apisarnthanarak, A., Yatrasert, A., Mundy, L., & Thammasat University Antimicrobial Stewardship Team. (2010, 7 2). Impact of Education and an Antifungal Stewardship Program for Candidiasis at a Thai Tertiary Care Center. Infection Control & Hospital Epidemiology, 31(07), 722-727.
- Azar, M., Turbett, S., Fishman, J., & Pierce, V. (2017). Donor-derived transmission of candida auris during lung transplantation. *Clinical Infectious Diseases*.
- Cadnum, J., Shaikh, A., Piedrahita, C., Jencson, A., Larkin, E., Ghannoum, M., & Donskey, C. (2018, 1 21). Relative Resistance of the Emerging Fungal Pathogen Candida auris and Other Candida Species to Killing by Ultraviolet Light. *Infection Control & Hospital Epidemiology, 39*(01), 94-96.
- Cadnum, J., Shaikh, A., Piedrahita, C., Sankar, T., Jencson, A., Larkin, E., . . . Donskey, C. (2017). Effectiveness of Disinfectants Against Candida auris and Other Candida Species. *Infection Control & Hospital Epidemiology*, 38(10), 1240-1243.
- Fakhim, H., Chowdhary, A., Prakash, A., Vaezi, A., Dannaoui, E., Meis, J., & Badali, H. (2017, 11 1). In Vitro Interactions of Echinocandins with Triazoles against Multidrug-ResistantCandida auris. Antimicrobial agents and chemotherapy, 61(11), e01056-17.

References

- Mizusawa, M., Miller, H., Green, R., Lee, R., Durante, M., Perkins, R., . . . Zhang, S. (2017). Can multidrug-resistant candida auris be reliably identified in clinical microbiology laboratories? *Journal* of Clinical Microbiology, 55(2), 638-640.
- Mondain, V., Lieutier, F., Dumas, S., Gaudart, A., Fosse, T., Roger, P.-M., . . . Pulcini, C. (2013). An antibiotic stewardship program in a French teaching hospital Bilan d'un programme de bon usage des antibiotiques dans un CHU français. *Medecine et Maladies Infectieuses*, 43(43), 17-21.
- Munoz, P., Valerio, M., Vena, A., & Bouza, E. (n.d.). Antifungal stewardship in daily practice and health economic implications.
- Pfaller, M., & Diekema, D. (2007, 1). Epidemiology of invasive candidiasis: a persistent public health problem. *Clinical microbiology reviews*, 20(1), 133-63.
- Piedrahita, C., Cadnum, J., Jencson, A., Shaikh, A., Ghannoum, M., & Donskey, C. (n.d.). Environmental Surfaces in Healthcare Facilities are a Potential Source for Transmission of Candida auris and Other Candida Species.
- Schelenz, S., Hagen, F., Rhodes, J., Abdolrasouli, A., Chowdhary, A., Hall, A., . . . Fisher, M. (2016). First hospital outbreak of the globally emerging Candida auris in a European hospital. *Antimicrobial resistance and infection control*, *5*, 35.

References

- Valerio, M., Rodriguez-Gonzalez, C., Muñoz, P., Caliz, B., Sanjurjo, M., Bouza, E., . . . Zamora, E. (2014). Evaluation of antifungal use in a tertiary care institution: Antifungal stewardship urgently needed. *Journal of Antimicrobial Chemotherapy*.
- Welsh, R., Bentz, M., Shams, A., Houston, H., Lyons, A., Rose, L., & Litvintseva, A. (2017). Survival, Persistence, and Isolation of the Emerging Multidrug-Resistant Pathogenic Yeast *Candida auris* on a Plastic Healthcare Surface. *Journal of Clinical Microbiology*, JCM.00921-17.
- Won, S., Munoz-Price, L., Lolans, K., Hota, B., Weinstein, R., & Hayden, M. (2011). Emergence and rapid regional spread of klebsiella pneumoniae carbapenemase-producing enterobacteriaceae. *Clinical Infectious Diseases*.