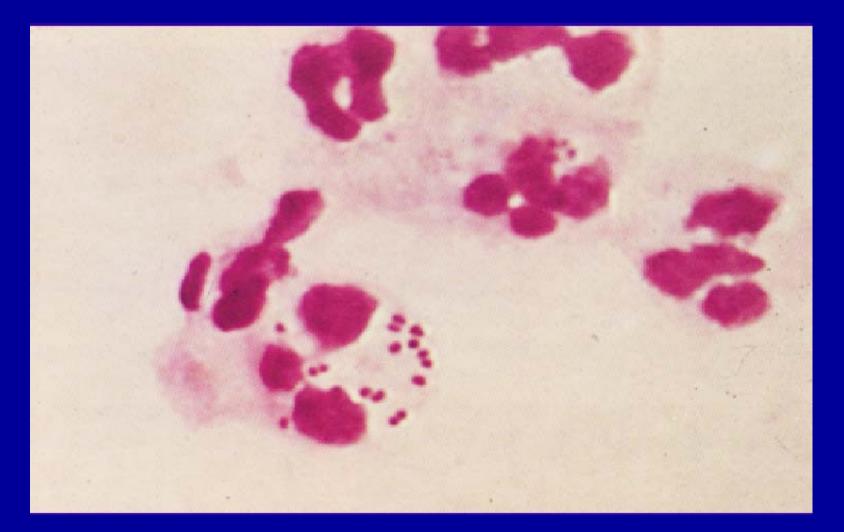
Meningococcal Disease Surveillance and Prevention Update

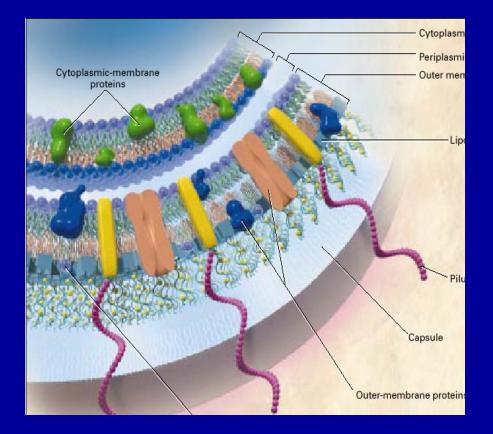
Henry Wu, MD LCDR, US Public Health Service Meningitis and Vaccine Preventable Diseases Branch National Center for Immunization and Respiratory Diseases Centers for Disease Control and Prevention May 15, 2009

Outline

- Background
- Meningococcal disease epidemiology
- Meningococcal vaccination
- Future vaccination prospects
 - New recommendations
 - New vaccines
- Emerging antimicrobial resistance


Background

Meningococcal Disease


- Neisseria meningitidis
- Common cause of meningitis and sepsis
- Death or disability of one in every four patients
- Case fatality rate 9-12%

Gram stain of N. meningitidis

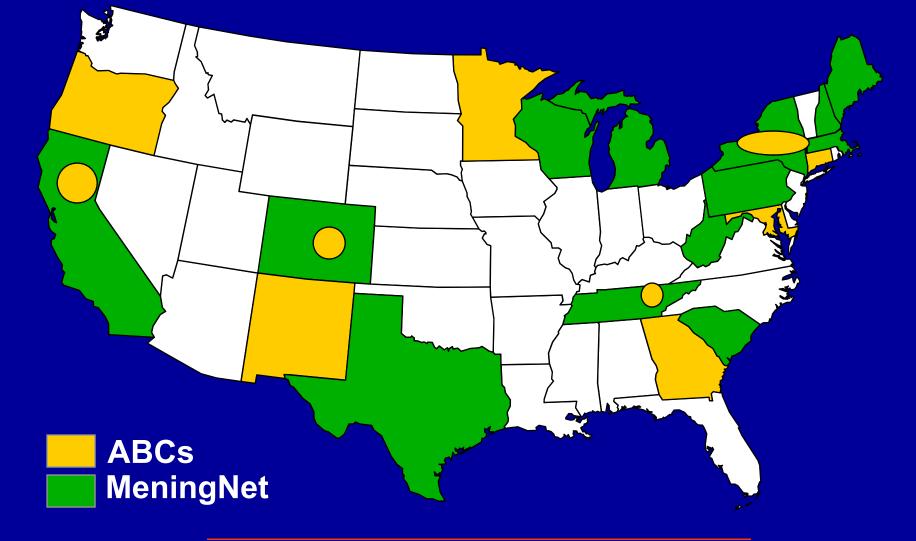
Cell membrane cross section

- Capsular polysaccharide
 - A, B, C, Y, W-135
 - B, C, Y most
 common in US
 - B is not covered by vaccine in US

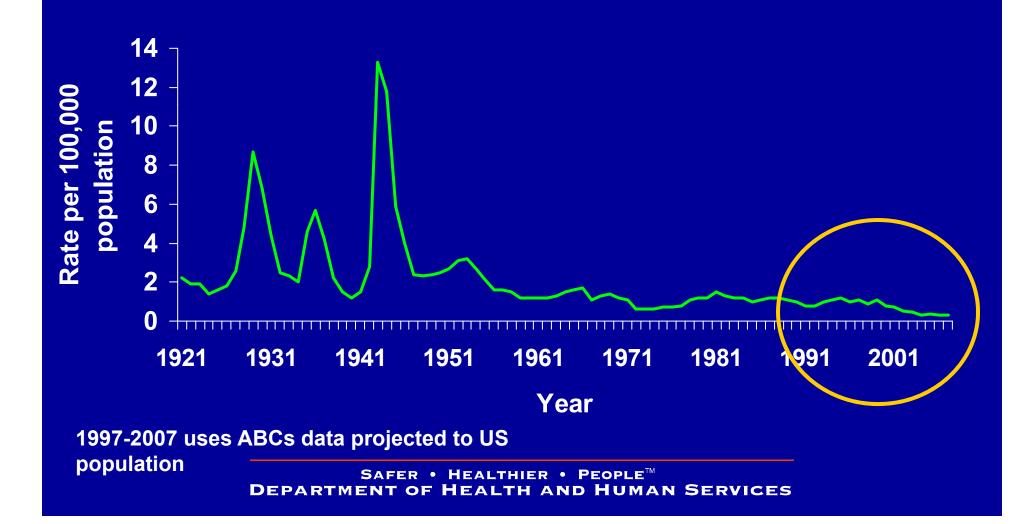
Disease patterns and risk factors

- All pathogenic serogroups can cause meningitis and/or sepsis, but classically:
 - C: sepsis with high CFR
 - B: meningitis with lower CFR
 - Y: often causes pneumonia in elderly
- Associated with increased risk of disease:
 - Terminal complement deficiency
 - Asplenia
 - Antecedent viral infection
 - Household crowding (including freshman dorms and military barracks)
 - Smoking (active and passive)

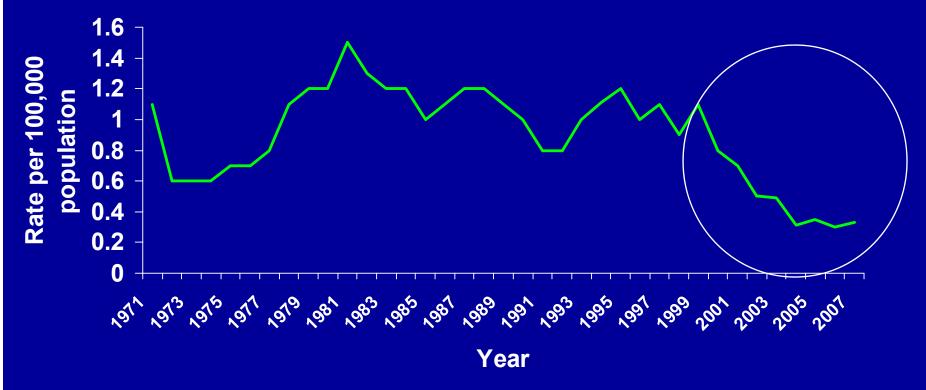
Case close contacts


- Close contacts of case patients are at increased risk for disease (500-800x)
 - Household members
 - Child-care contacts
 - Direct exposure to oral secretions
 - Kissing
 - Mouth to mouth resuscitation
 - Endotracheal intubation, tube management
- Chemoprophylaxis urgent, but probably of limited value 14 days after exposure

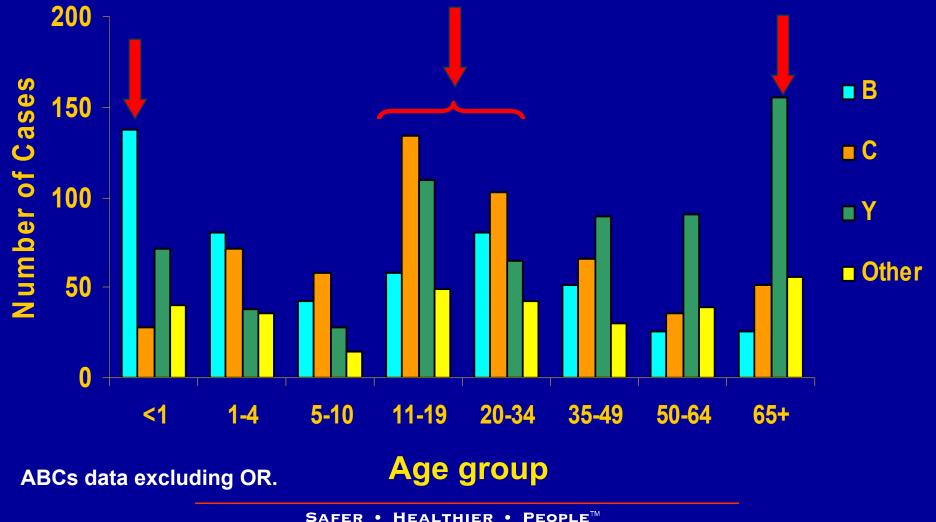
Epidemiology


Meningococcal disease surveillance

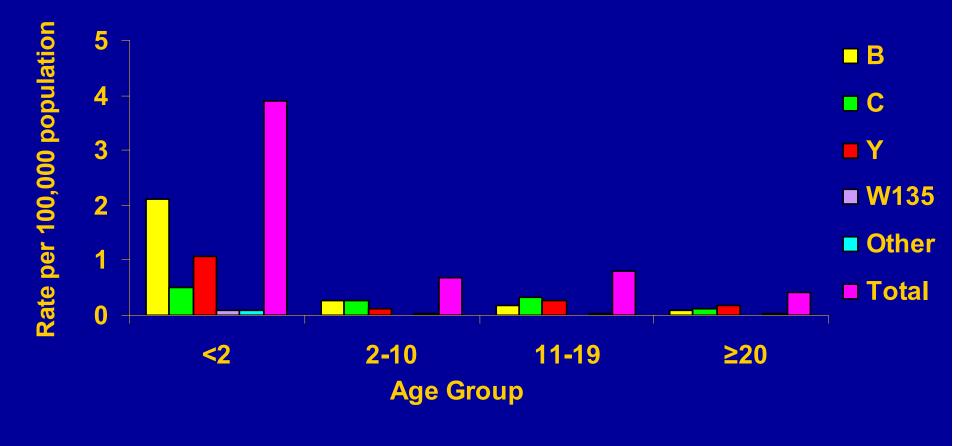
- National Notifiable Disease Surveillance System
- Active Bacterial Core Surveillance (ABCs)
- MeningNet


ABCs and MeningNet Sites

Meningococcal Disease Incidence, US (1921-2007)



Meningococcal Disease Incidence, US (1970-2007)


1997-2007 uses ABCs data projected to US population

Cases of Meningococcal Disease by Age and Serogroup, 1996-2005 (n=2003)

DEPARTMENT OF HEALTH AND HUMAN SERVICES

Projected Rates of Meningococcal Disease by Serogroup, 1997-2006

ABCs cases from 1997-2006 and projected to the U.S. population

Meningococcal Vaccines

Tetravalent meningococcal polysaccharide vaccine

- Menomune[®] (MPSV4, Sanofi Pasteur)
- Serogroups A, C, Y, W-135
- Vaccine efficacy

- VE = 85% (95Cl 27%-97%) for serogroup C in 2-29 year-olds

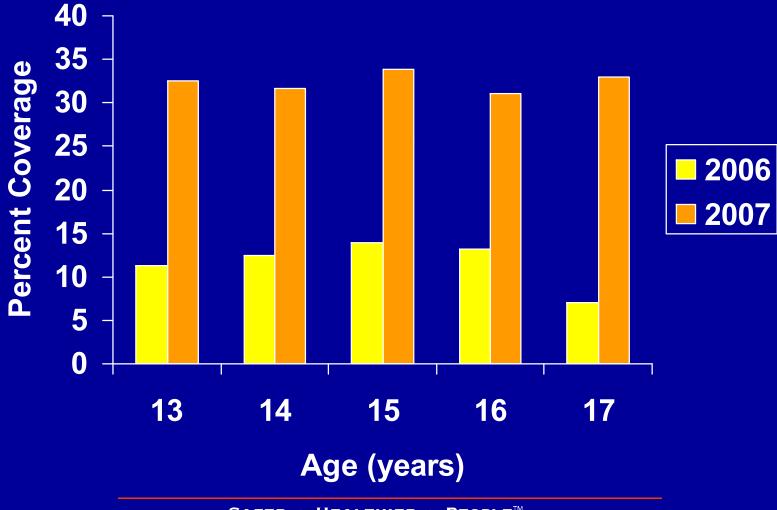
Tetravalent Meningococcal Conjugate Vaccine

- Licensed 2005
- Menactra[®] (MCV4, Sanofi Pasteur)
- Serogroups A,C,Y,W-135
 - 4µg of each capsular polysaccharide
 - conjugated to 48µg diphtheria toxoid
- MCV4 immunogenicity comparable to MPSV4
- Case-control study underway

MCV4 vs. MPSV4: Presumed advantages of conjugate vaccines

T cell-dependent response

 Longer duration of protection
 Primes for immunologic memory


 Reduction of asymptomatic carriage

ACIP Recommendations

Recommended Immunization Schedule for Persons Aged 7 Through 18 Years—United States • 2009 For those who fall behind or start late, see the schedule below and the catch-up schedule

Vaccine▼ Age►	7–10 years	11–12 years	13–18 years		
Tetanus, Diphtheria, Pertussis ¹	see footnote 1	Tdap	Tdap		
Human Papillomavirus²	son footnote 2	HPV (2 doses)	HPV Series		
Meningococcal ³	MCV	MCV	MCV		
Influenza ⁴	Influenza (Yearly)				
Pneumococcal⁵		PPSV	•		
Hepatitis A ⁶		HepA Series			
lepatitis B ⁷		HepB Series			
Inactivated Poliovirus ⁸	IPV Series				
Measles, Mumps, Rubella ⁹		MMR Series			
Varicella ¹⁰		Varicella Series			

NIS-Teen Coverage, 2006-07

SAFER • HEALTHIER • PEOPLE[™] DEPARTMENT OF HEALTH AND HUMAN SERVICES

What about recent serogroup B disease clusters??

- U PENN, and others
- Serogroup B historically associated with larger community-wide outbreaks
- Factors behind recent clusters unclear
 - Recent increase in incidence?
 - Serogroup replacement?
 - Natural cycles?

Meningococcal disease in MCV4 vaccinated persons

- 14 confirmed cases*
 - -7 (50%) male
 - -7 (50%) attending college
 - -2 (14%) military recruits
 - Median age of vaccination 18.4
 - Median age at time of disease 19.9
- No common lot of vaccine
- Vaccine efficacy vs. waning protection?

*Cases identified through December 31, 2008

Underlying Medical Conditions

Case	Description
1	Pulmonary embolism and deep vein thrombosis
2	Diabetes and mitral valve prolapse
3	Irritable bowel syndrome, eczema
4	Current smoker
5	Pyelonephritis
6	None reported
7	Seasonal allergies
8	None reported
9	Prior history of bacterial meningitis, recurrent infections
10	None reported
11	None reported
12	None reported
13	Anemia and receiving eculizumab (Soliris)
14	Unknown

Eculizumab (Soliris[®])

- Approved 2007
- Monoclonal antibody targeted against complement protein C5
- Indication: Paroxysmal nocturnal hemoglobinuria (PNH)
- Increased risk of meningococcal disease*
 - Meningococcal disease in 2 of 196 PNH patients while receiving eculizumab in a clinical trial
 - Black box warning: Vaccination and monitoring recommnded

*Soliris[®] prescribing information.

Stay Tuned: Revaccination

Duration of protection?

- Antibody response known to decrease over time with conjugate vaccines
- Immunologic memory activation alone is likely too slow to protect against meningococcal disease
- Revaccination of healthy individuals?
- Revaccination of high risk individuals?

Stay tuned: New Vaccines

- Expected licensure of Novartis A,C,Y,W-135 vaccine for adolescents and adults
- Infant conjugate vaccines about a year away
- Serogroup B vaccines 3-5 years?
 Target various outer membrane proteins
 - Must be designed to target specific serogroup B strains

Antimicrobial resistance

Chemoprophylaxis Recommendations (2005)

Drug	Age group	Dosage	Duration and Route
Rifampin*	<1 mo	5 mg/kg q12 hr	2 days PO
	Children ≥1 mo	10 mg/kg q12 hr	2 days PO
	Adults	600 mg q12 hr	2 days PO
Ceftriaxone	Children < 15 yr	125 mg	Single IM dose
	Adults	250 mg	Single IM dose
Ciprofloxacin*	Adults	500 mg	Single PO dose

*Not recommended for pregnant women.

Penicillin resistance

- 1940's therapeutic use
- 1980's reports of intermediate resistance
- Increasing rates of intermediate resistance, especially in Europe
- High level resistance rare

Ceftriaxone resistance

India 2006: 8 cases

 Some isolates reportedly multidrug resistant (chloramphenicol, ciprofloxacin)

Machanda V, Bhada P. JCM 2006, V. 44, pp. 4290-91.

Rifampin resistance

- Chemoprophylaxis use since 1960's
- Reports of resistance developing after chemoprophylaxis (1970's)
- Associated with chemoprophylaxis failure cases
- Primary cases of rifampin-resistant disease is rare

Ciprofloxacin resistance

- Sporadic reports overseas since 1990's
- North Dakota/Minnesota (2007-08)
 - 3 cases and one asymptomatic carrier identified (serogroup B)
 - Ciprofloxacin no longer recommended locally
 - Recommended: cetriaxone, rifampin, or azithromycin
- California (2008)
 - 1 case identified (serogroup Y)
- No change in local chemoprophylaxis guidelines MMWR 2008, 57:173-5.

Wu H, et al. NEJM 2009, 360: 886-892.

Ciprofloxacin resistance: ?s

- Clinical significance?
- Sporadic or emerging?
- Will it follow the same pattern of quinolone-resistant *N. gonorrhoeae?*
- Alternative chemoprophylaxis agents needed
 - Azithromycin resistance
 - Oral 3rd generation cephalosporins

Antimicrobial resistance surveillance

- Chemoprophylaxis failures
- Prospective antimicrobial resistance surveillance
 - ABCs
 - MeningNet

Take home messages

- Meningococcal disease incidence decreasing
- Effect of MCV4 on disease epidemiology still unclear
- New vaccines and recommendations are on the horizon
- Antimicrobial resistance is present
- Report
 - Vaccination failures
 - Chemoprophylaxis failures

Thank You!

Henry M. Wu Centers for Disease Control and Prevention 1600 Clifton Rd MS C-09 Atlanta, GA 30333 Phone: (404) 639-8743 E-mail: hwu@cdc.gov