CRE: The good, the (mostly) bad and the ugly

Thomas Fekete, MD Temple University School of Medicine

No conflicts



### What...

- Kinds of patients get CRE colonization?
- Determines invasive disease?
- Treatment is most effective?
- Can I do to prevent the disease?
- TF?

## The problem



## 1912 Growler



#### 1912 Growler



## **CRE is an iceberg**

- Hidden unless you look for it
- Slips past quietly; problems when not expected
- Other icebergs around
  - Avoiding one doesn't mean you're out of danger

### Lessons of the NIH

- June, 2011: Patient with KPC producing K. pneumoniae transferred from New York to ICU at NIH in Bethesda
- Precautions taken from day 1
- Patient discharged one month later
- No further cases of KPC producing K. pneumoniae seen during this month-long stay

Snitkin, et al. Sci Transl Med. 2012

#### But then...

- August 5: KPC producing K. pneumoniae isolated from tracheal secretions of patient who never shared a hospital unit with index patient
- Eventually 17 patients were colonized/infected with KPC producing K. pneumoniae
  - 10/17 died: 6 attributable to KPC producing K. pneumoniae
- Strict cohorting, aggressive isolation, enhanced equipment sterilization stopped epidemic

#### Were these isolates related?

Complete genome analysis of 18 strains (all were ST 258)
 41 single nucleotide variation loci in 6,000,000 bases



#### But then...

- August 5: KPC producing K. pneumoniae isolated from tracheal secretions of patient who never shared a hospital unit with index patient
- Eventually 17 patients were colonized/infected with KPC producing K. pneumoniae
  - 10/17 died: 6 attributable to KPC producing K. pneumoniae
- Strict cohorting, aggressive isolation, enhanced sterilization stopped epidemic?



## What's more chilling...

- Initial strain was susceptible to gent, tigecycline, colistin
- Subsequent strains developed resistance to all 3
- Multiple acquisitions of resistance to colistin
- The 41 SNV were not random: many of them led to resistance

#### To become carbapenem resistant

#### Bacteria have to earn it

- They have a PhD in resistance before their post-doc CRE work
- Origin of CRE phenotype is mostly enzymatic
- Several families of beta-lactamase have CRE members (KPC, NDM, IMI, OXA)
- Additionally, permeability reduction can contribute when less specific beta-lactamases (ESBL) are present

## "Swimming in resistance"

- Patients infected/colonized with CRE often harbor other resistant bacteria
- 86 Detroit patients with CRE: 40% also had carbapenem resistant Pseudomonas aeruginosa or Acinetobacter
- As compared to CRE alone, co-colonized patients: more
  - Sick
  - ICU / LTACH exposure
  - Procedures
  - MRSA Rx

Marchaim D, et al. Am J Infect Contr. 2012; 40:830

## **Antibiotics for CRE**

- Tigecycline (and tetracyclines)
- Colistin and polymyxin
- Aminoglycosides
- Surprise: carbapenems

How about some dark horses?

## So crazy it just might work?

- Temocillin
- Chloramphenicol
- Mecillinam/Amdinocillin (with or without BLI)
- Fosfomycin

Really not sufficient clinical experience to support – in vitro variable

#### Table 1

Minimum inhibitory concentrations (MICs) of antibiotics in relation to carbapenemase type<sup>a</sup>.

| Antibiotic/carbapenemase | No. isolates with indicated MIC (mg/L): |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |    |                |     |      |
|--------------------------|-----------------------------------------|------|------|-----------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|----|----------------|-----|------|
|                          | 0.06                                    | 0.12 | 0.25 | 0.5             | 1 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 | 8 | 16 | 32 | 64             | 128 | ≥256 |
| Chloramphenicol          |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |    |                |     |      |
| IMP                      |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 3 | 2  |    | 4              |     | 4    |
| NDM                      |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 | 1 | 3  | 1  | 1              | 1   | 8    |
| VIM                      |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |   |    | 1  |                | 3   |      |
| KPC                      |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 1 | 1  | 2  | 4              |     | 3    |
| SME-1                    |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |    | 1              |     |      |
| OXA-48                   |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 | 3 |    |    |                | 4   | 7    |
| Impermeability + ESBL    |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 | 1 | 2  | 2  | 1              |     | 3    |
| Impermeability + AmpC    |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 2 | 3  | 1  |                |     |      |
| Ciprofioxacin            | 2                                       |      | 1    | 1               | 1 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 |   |    | 2  | 1              |     |      |
| IIVIP                    | 2<br>1b                                 |      | 1    | 1               | 1 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3 | 2 | 1  | 3  | 1              |     | 4    |
| NDM                      | 15                                      |      |      |                 | 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 2 | 1  | 1  | 4              | 4   | 4    |
| KDC                      |                                         |      |      |                 | 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   | 1  | 2  | з              | 5   | 1    |
| SME_1                    | 1b                                      |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    | 2  | 5              | 5   | 1    |
|                          | 2b                                      | 1    |      | 1               |   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 |   |    | 1  | 1              | 2   | 2    |
| UNA-40                   | 2                                       | 1    |      | 1               |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | 1 |    | 3  | 3              | 2   | 5    |
| Impermeability + AmpC    | ۸b                                      |      |      |                 |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 | 1 | 1  | 5  | 5              |     |      |
| Colistin                 | 4                                       |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 |   | 1  |    |                |     |      |
| IMP                      |                                         |      |      | 10 <sup>b</sup> | 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |    |                |     |      |
| NDM                      |                                         |      |      | 13 <sup>b</sup> | 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 1 |    |    | 1 <sup>C</sup> |     |      |
| VIM                      |                                         |      |      | Ap              | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |    | 1              |     |      |
| KDC                      |                                         |      |      | ٥b              | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    | 1  |                |     |      |
| SMF-1                    |                                         |      |      | 5               | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    | 1  | 1 <sup>C</sup> |     |      |
| 0XA-48                   |                                         |      |      | 11 <sup>b</sup> | 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    | 1  | •              |     |      |
| Impermeability + FSBI    |                                         |      |      | 7b              | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    | 1  |                |     |      |
| Impermeability + AmpC    |                                         |      |      | 5b              | 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |    |                |     |      |
| Fosfomycin               |                                         |      |      | 5               | • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    |    |                |     |      |
| IMP                      |                                         |      |      |                 |   | 1 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 | 4 | 1  | 1  |                |     | 3    |
| NDM                      |                                         |      |      |                 |   | 6 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 | 3 | 1  | 2  | 2              | 1   | 1    |
| VIM                      |                                         |      |      |                 |   | , in the second s | • | 1 | 1  | 1  | 1              |     | 1    |
| KPC                      |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 1 | 4  | 1  | 4              |     | 1    |
| SME-1                    |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   | 1  |    |                |     |      |
| OXA-48                   |                                         |      |      |                 |   | 2 <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 | 2 | 1  | 5  | 3              | 5   |      |
| Impermeability + ESBL    |                                         |      |      |                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |    | 2  | 1              | 1   | 5    |
| Impermeability + AmpC    |                                         |      |      |                 |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |   | 1  | 1  | 2              | 1   |      |

| Nitrofurantoin        |     |   |   |   |                |   |   |   |                |   |    |
|-----------------------|-----|---|---|---|----------------|---|---|---|----------------|---|----|
| IMP                   |     |   |   |   | 1 <sup>b</sup> |   | 2 | 1 | 1              | 5 | 3  |
| NDM                   |     |   |   |   |                |   | 3 |   | 3              | 4 | 7  |
| VIM                   |     |   |   |   |                |   |   |   | 1              | 1 | 3  |
| KPC                   |     |   |   |   |                |   |   |   |                |   | 11 |
| SME-1                 |     |   |   |   |                |   |   |   |                |   | 1  |
| OXA-48                |     |   |   |   |                |   |   |   |                | 3 | 16 |
| Impermeability + ESBL |     |   |   |   |                |   |   |   |                |   | 9  |
| Impermeability + AmpC |     |   |   |   |                |   |   |   | 1              | 2 | 3  |
| Temocillin            |     |   |   |   |                |   |   |   |                |   | _  |
| IMP                   |     |   |   |   |                |   |   | 1 | 6              | 5 | 1  |
| NDM                   |     |   |   |   |                | 1 | 1 |   | 4              | 1 | 10 |
| VIM                   |     |   |   |   |                |   |   |   |                | 1 | 4  |
| KPC                   |     |   |   |   |                |   | 2 | 4 | 4              | 1 |    |
| SME-1                 |     |   |   |   |                | 1 |   |   |                |   |    |
| OXA-48                |     |   |   |   |                | 1 |   |   |                |   | 18 |
| Impermeability + ESBL |     |   |   |   |                | 1 | 1 | 7 |                |   |    |
| Impermeability + AmpC |     |   |   |   |                |   | 5 | 1 |                |   |    |
| Minocycline           |     |   |   |   |                |   |   |   |                |   |    |
| IMP                   |     |   |   |   | 2              | 6 | 3 | 1 | 1 <sup>c</sup> |   |    |
| NDM                   |     |   | 1 | 3 | 1              | 5 | 3 | 2 | 2 <sup>c</sup> |   |    |
| VIM                   |     |   |   |   | 1              | 3 | 1 |   |                |   |    |
| KPC                   |     |   |   |   |                | 6 | 1 | 1 | 30             |   |    |
| SME-1                 |     |   |   |   |                | 1 |   |   |                |   |    |
| OXA-48                |     |   |   | 2 | 3              | 8 | 2 | 3 | 10             |   |    |
| Impermeability + ESBL |     |   |   |   | 4              | 2 | 2 | 1 |                |   |    |
| Impermeability + AmpC |     |   |   |   | 4              |   | 1 |   | 14             |   |    |
| Tigecycline           |     |   |   |   |                |   |   |   |                |   |    |
| IMP                   | . h | 1 | 4 | 4 | 4              |   |   |   |                |   |    |
| NDM                   | 10  | 5 | 4 | 3 | 3              | 1 |   |   |                |   |    |
| VIM                   |     |   | 3 | 1 | 1              |   |   |   |                |   |    |
| KPC                   |     |   | 2 | 6 | 2              | 1 |   |   |                |   |    |
| SME-1                 |     | 2 | c | 0 | 1              |   |   |   |                |   |    |
| UXA-48                |     | 3 | 0 | 9 | 1              |   |   |   |                |   |    |
| Impermeability + ESBL |     | 1 | 5 | 3 | 2              |   |   |   |                |   |    |
| impermeability + Ampc |     |   | 3 | 1 |                |   |   |   |                |   |    |

### **Bottom line**

• As expected, colistin and tigecycline are attractive *in vitro* 

Only other "surprise" is fosfomycin

Currently only available as single 3 g oral dose

Can IV fosfomycin be developed as an "orphan" drug?

|                                            |                       | 0                | verall cultures                       | Urinary cultures |                                       |  |
|--------------------------------------------|-----------------------|------------------|---------------------------------------|------------------|---------------------------------------|--|
|                                            |                       | Number<br>tested | Fosfomycin, number<br>susceptible (%) | Number<br>tested | Fosfomycin, number<br>susceptible (%) |  |
| Carbapenem-resistant<br>Enterobacteriaceae | Klebsiella<br>species | 79               | 67 (85%)                              | 29               | 23 (57%)                              |  |
|                                            | Enterobacter species  | 13               | 11 (72%)                              | 5                | 4 (80%)                               |  |
|                                            | Escherichia<br>coli   | 1                | 1 (100%)                              | 1                | 1 (100%)                              |  |

Pogue JM, et al. J Antibiot 2013; doi: 10.1038/ja.2013.56





8

16

24

6

1,00E+02

1,00E+01

1,00E+00

0

2

4

K. pneumoniae 3

– K. pneumoniae 4

E. coli ATCC 25922

Bactericidal Level



#### What is the clinical experience?

#### Cleveland experience

- 60 patients with KPC bacteremia
- 14d mortality 42%
  - Only 31% in people who were diagnosed ante-mortem
  - All non-survivors were on "active" treatment at time of death
- This was a sick cohort but non-survivors were even sicker
- Underlying conditions might predispose to CRE or determine eventual fate of patient

Neuner, et al. Diagn Microbiol Infect Dis 2011; 69:357

## Role of specific Rx agent

- All the data are from case reports and case series
- No RCT data available
- Cohort studies are available but their data might be hard to generalize
- Case control studies are hard to interpret
  Who is really a good control?

#### **KPC Enterobacteriaceae infections**

Systemic review in 2011 (66 articles, 61 abstracts)

- 38 articles (105 cases) analyzed
- Choice of Rx was varied (single/combo/different classes)
- K. pneumoniae, E. coli, Enterobacter cloacae and others
- Mostly ICU patients with mean APACHE II of 21
- Duration of hospital stay before infection, mean of 18 d
  - For reference, 4-6d LOS is typical for acute care hospital pts

Lee GC, Burgess DS. Ann Clin Microbiol Antimicrob 2012; 11:32

#### **KPC Enterobacteriaceae infections**

#### • Which treatment is best?

Impossible to control for all variables

Some success with almost every regimen

|                                  | Monotherapy<br>(%) | Combination<br>(%) | Р    |
|----------------------------------|--------------------|--------------------|------|
| Overall treatment failure        | 24/49(49)          | 14/56(25)          | 0.01 |
| Source:                          |                    |                    |      |
| Blood                            | 12/24 (50)         | 9/32(28)           | 0.09 |
| Pulmonary                        | 10/15(67)          | 5/17(29)           | 0.03 |
| Urine                            | 1/8(13)            | 0/3(0)             | 0.4  |
| Polymyxin treatment failure      | 8/11(73)           | 10/34(29)          | 0.02 |
| Carbapenem treatment failure     | 12/20(60)          | 5/19(26)           | 0.03 |
| Tigecycline treatment failure    | 2/7(29)            | 7/19(37)           | 0.4  |
| Aminoglycoside treatment failure | 0/6(0)             | 4/24(17)           | 0.6  |

Lee GC, Burgess DS. Ann Clin Microbiol Antimicrob 2012; 11:32

## Tigecycline plus...

#### Trauma UCI in Italy

- Outbreak of ST512 KPC K. pneumoniae
- Overall good outcomes (24/26 patients completed Rx alive)
- This is despite high level of resistance to colistin and tigecycline
- Patients did not get carbapenems but almost all got tigecycline combination Rx (tigecycline plus..., colistin, gentamicin, fosfomycin)

## **Tigecycline resistance**

- Initial resistance (MIC >2) varies but usually less than 10%
- Emergence of resistance on or after therapy is recognized
- Unsurprisingly, receipt of tigecycline for CRE Rx has a large selection effect on subsequent resistance (OR = 6 with p < .001)</li>

Nigo M, et al. Antimicriob Agents Chemother. 2013; 57:5743

## SICU outbreak Italy

30 cases of KPC K. pneumo (ST258) with mortality 40%

Best outcomes: double dose (200 mg loading, 100 Q12h) tigecycline + 5 mg/kg/d colistin



Figure 2 Kaplan-Meler survival curves show significantly lower mortality among patients treated with a combination therapy of high-dosage tigecycline plus colistin compared with those treated with recommended dosage of tigecycline plus colistin (log-rank test, p = 0.0035).

Di Carlo et al. BMC Anesthesiology 2013, 13:13

#### **Rx conclusions**

- Sketchy and uncertain data
- Extensive variation makes interpretation hard!
  - Significant patient variability
  - Species (Klebsiella, E. coli, Enterobacter, others)
  - Enzymes (KPC variants, NDM, IMI, OXA as well as ESBL)
  - Intrinsic/baseline resistance makes some choices moot
  - Combination using agents that have little in vitro activity is counter-intuitive but sometimes successful

## It's the Wild West out there!



### Prevention

- Think hand-to-hand combat
- Think ahead
- Think globally, act locally

### Hands

Infection prevention starts with hand hygiene

Relevant to community and hospital settings

How do we know it works?



Pittet D., et al. Lancet ID 2006; 6:641

Figure 4-5. Hammer-fist strike to face.

| Reference                                                                                                                                             | Hospital setting             | Results                                                                                                                                                                                                                                                                      | Duration of<br>follow-up |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|--|--|--|
| Casewell and Phillips (1977) <sup>31</sup>                                                                                                            | Adult ICU                    | Significant reduction (p<0.001) in the percentage of patients colonised or infected by<br>Klebsiella spp                                                                                                                                                                     | 2 years                  |  |  |  |  |
| Conly et al (1989) <sup>95</sup>                                                                                                                      | Adult ICU                    | Significant reduction (p=0.02) in health-care-associated infection rates immediately after hand hygiene promotion (from 33% to 12% and from 33% to 9%)                                                                                                                       | 6 years                  |  |  |  |  |
| Simmons et al (1990) <sup>96</sup>                                                                                                                    | Adult ICU                    | No effect on health-care-associated infection rates (no significant [p<0·05] improvement of hand hygiene adherence)                                                                                                                                                          | 11 months                |  |  |  |  |
| Doebbeling et al (1992) <sup>90</sup>                                                                                                                 | Adult ICUs                   | Significant (p<0.02) difference between rates of health-care-associated infection using two different hand hygiene agents                                                                                                                                                    | 8 months                 |  |  |  |  |
| Webster et al (1994)91                                                                                                                                | NICU                         | Elimination of MRSA, when combined with multiple other infection control measures.<br>Reduction of vancomycin use. Significant $p<0.02$ reduction of nosocomial bacteraemia<br>(from 2.6% to 1.1%) using triclosan compared with chlorhexidine for handwashing               | 9 months                 |  |  |  |  |
| Zafar et al (1995) <sup>92</sup>                                                                                                                      | Newborn nursery              | Control of a MRSA outbreak using a triclosan preparation for handwashing, in addition to other infection control measures                                                                                                                                                    | 3.5 years                |  |  |  |  |
| Larson et al (2000) <sup>94</sup>                                                                                                                     | MICU/NICU                    | Significant (85%, p=0·02) relative reduction of VRE rate in the intervention hospital;<br>insignificant (44%) relative reduction in control hospital; no significant change in MRSA                                                                                          | 8 months                 |  |  |  |  |
| Pittet et al (2000) <sup>93</sup>                                                                                                                     | Hospital-wide                | Significant ( $p=0.04$ and $p<0.001$ ) reduction in the annual overall prevalence of health-care-<br>associated infections (41.5%) and MRSA cross-transmission rates (87%). Active surveillance<br>cultures and contact precautions were implemented during same time period | 5 years                  |  |  |  |  |
| Hilburn et al (2003) <sup>99</sup>                                                                                                                    | Orthopaedic<br>surgical unit | 36.1% decrease in infection rates (from 8.2% to 5.3%)                                                                                                                                                                                                                        | 10 months                |  |  |  |  |
| MacDonald et al (2004) <sup>97</sup>                                                                                                                  | Hospital-wide                | Significant (p=0.03) reduction in hospital-acquired MRSA cases (from $1.9\%$ to $0.9\%$ )                                                                                                                                                                                    | 1 year                   |  |  |  |  |
| Swoboda et al (2004) <sup>98</sup>                                                                                                                    | Adult intermediate care unit | Reduction in health care-associated infection rates (not significant, p value not reported)                                                                                                                                                                                  | 2.5 months               |  |  |  |  |
| Lam et al (2004) <sup>100</sup>                                                                                                                       | NICU                         | Reduction (not significant, p=0.14) in health-care-associated infection rates (from $11.3$ per 1000 patient-days to $6.2$ per 1000 patient-days)                                                                                                                             | 6 months                 |  |  |  |  |
| Won et al (2004) <sup>101</sup>                                                                                                                       | NICU                         | Significant reduction (p=0.003) in health care-associated infection rates (from 15.1 per 1000 patient-days to 10.7 per 1000 patient-days), in particular of respiratory infections                                                                                           | 2 years                  |  |  |  |  |
| Zerr et al (2005)102                                                                                                                                  | Hospital-wide                | Significant (p=0.01) reduction in hospital-associated rotavirus infections                                                                                                                                                                                                   | 4 years                  |  |  |  |  |
| Rosenthal et al (2005) <sup>103</sup>                                                                                                                 | Adult ICUs                   | Significant (p<0·001) reduction in health-care-associated infection rates (from 47·5 per 1000 patient-days to 27·9 per 1000 patient-days)                                                                                                                                    | 21 months                |  |  |  |  |
| Johnson et al (2005) <sup>104</sup>                                                                                                                   | Hospital-wide                | Significant (p=0.01) reduction (57%) in MRSA bacteraemia                                                                                                                                                                                                                     | 36 months                |  |  |  |  |
| ICU=intensive care unit, NICU=neonatal ICU, MRSA=meticillin-resistant Staphylococcus aureus, MICU=medical ICU, VRE= vancomycin-resistant enterococci. |                              |                                                                                                                                                                                                                                                                              |                          |  |  |  |  |

Table: Association between adherence with hand hygiene practice and health-care-associated infection rates: hospital-based studies, 1975–2005

#### Is antibiotic exposure relevant?

Different studies come to different conclusions

- In some settings, carbapenems appear to play a strong role
- Other studies focus on fluoroquinolones, advanced cephalosporins and BLI combinations
- Less surprising than on face value
  - Hospitals have heavy antibiotic pressure
  - CRE arises from acquisition of plasmids: usually with multiple resistance genes

#### From a case/control trial

multivariable analysis showed that exposure to fluoroquinolones [odds ratio (OR) 4.54, 95% confidence intervals (CIs) 1.78–11.54, P = 0.001] and exposure to antipseudomonal penicillins (OR 2.57, 95% CI 1.00–6.71, P = 0.04) were independent risk factors for CRKp infections.

Falagas ME., et al. J Antimicrob Chemo 2007; 60:1124

### **Avoid selection pressure**

- Temptation for broad therapy
- Fear of "missing" something
- Why do other classes of Abx select for CRE?
  - These are almost always multi-drug resistant
  - Healthy flora likely suppresses these highly resistant strains

#### **De-escalation**

- Studies of de-escalation therapy are limited
  - Poor uptake of de-escalation recommendations
  - Study groups not always comparable
  - Hard to prove a negative
- Good news: no evidence of harm
- Bad news: hard to prove ecological benefit
- Unsurprising news: ID docs are more comfortable with de-escalation than other clinicians

Masterton RG. Crit Care Clin 2011; 27:149

# The Universe

- Universal decontamination... really works in the ICU
  - Standard "hospital contact isolation" was not successful in the NIH CRE outbreak
    - Even equipment decontamination was challenging
  - Targeted strategies (e.g. MRSA) are cumbersome
- What if something simpler were available?

## Trial of target vs. general

- A large cluster randomized trial was done to test various MRSA strategies
- Screening and isolation plus/minus decolonization were less effective than decolonization efforts for all ICU patients

Huang SS et al. N Engl J Med 2013;368:2255-2265.



#### Grp 1: screen/isolate

#### Grp 2: screen/isolate decolonize

#### Grp 3: decolonize



#### Interventions for Reducing Antibiotic Exposure in Hospitals.

| Interventions for Reducing Antibiotic Exposure in Hospitals.                                                                                                                                |                                                                                                                                                                                |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Intervention                                                                                                                                                                                | Comments                                                                                                                                                                       |  |  |  |  |  |  |
| Promote clear, accessible decision support for appropriate duration of antibiotic therapy                                                                                                   | Target common diagnoses and provide links to evidence                                                                                                                          |  |  |  |  |  |  |
| Use standardized order sets                                                                                                                                                                 | Clearly define the appropriate antimicrobial agent, dose, and duration of treatment                                                                                            |  |  |  |  |  |  |
| Make the antibiotic indication visible at the point of care                                                                                                                                 | Potential strategies include requiring the indication to be specified at the time the order is written and highlighting the indication on the medication administration record |  |  |  |  |  |  |
| Include start day, day of treatment, and expected duration in documentation of patient care                                                                                                 | Provide visible reminders of the amount of antibiotic received<br>and expected, facilitating awareness and daily decision<br>making                                            |  |  |  |  |  |  |
| Implement an antibiotic "time out" after 72 hours of treatment                                                                                                                              | Promotes timely, team-based assessment of whether anti-<br>biotic therapy can be discontinued or de escalated                                                                  |  |  |  |  |  |  |
| Send appropriate cultures before starting antibiotics                                                                                                                                       | Positive cultures help to tailor regimens to the narrowest spectrum appropriate; negative cultures reduce clinicians' anxiety about discontinuing unnecessary therapy          |  |  |  |  |  |  |
| Implement prospective-audit with feedback strategies<br>and build an organizational culture in which feedback<br>is viewed as valuable input toward enhancing safety<br>and quality of care | Engages frontline clinicians and tracks progress                                                                                                                               |  |  |  |  |  |  |

Sandora TJ, Goldmann DA. N Engl J Med 2012;367:2168-2170.



## **Does CRE colonization exist?**

- Colonization is a prelude to infection
- Not all colonized patients will proceed to infection
- Rx of colonized patients not likely to be effective
  - In a study of 42 patients, nearly ½ had only colonization
  - Of these about <sup>1</sup>/<sub>2</sub> were treated with antibiotics
  - Only 1 went on to show infection (29 days later)

Rihani DS, et al. Scand J Infect Dis 2012; 44:325.

#### How to screen

- First, determine WHOM to screen
- Culture?
  - Chromogenic agar can be helpful in environmental screening
- PCR
  - If you know which KPC genotype you are looking for

Lerner A, et al. J Clin Microbiol. 2013; 51:177 Lerner A. Antimicrob Agents Chemother. 2013; 57:1474

## **Consider LTACH**

- Long term acute care hospitals (LTACH) are a source of CRE
- In Chicago study, > 30% of patients in 7 LTACHs colonized/infected by KPC strains
   Compared to a 2% in parts pare been itals
  - Compared to 3.3% in acute care hospitals
- Smart to screen patients entering acute care
- Possible role of health workers going back and forth?

Lin MY, et al. Clin Infect Dis 2013; 57:1246

### Where does this leave us?

Plenty of suggestions, little data

• Where to go from here?



- We have techniques to screen for and distinguish among highly resistant Enterobacteriaceae
- Molecular techniques enhance understanding of spread
- Getting better at universal decontamination, etc.
- Not all colonization leads to infection (but a lot does)
   Some strain not exceptionally virulent
- Treatments work reasonably in patients with clinical reserve

## The bad and the ugly

- Hospitals, LTACHs nursing homes are not ready for CRE
- Screening, arbitrary; treatment inconsistent (chaotic?)
- Optimal infection prevention strategy still not clear
   Role of equipment sterilization, environment, etc.
- CRE getting more resistant... and maybe more virulent
- Coming soon, ambulatory CRE infection
  - NDM epidemic
  - ESBL Enterobacteriaceae

## So, it's that time



#### If you're going to shoot, shoot. Don't talk